Common Continuous Distributions

1. Uniform Distribution

A random variable X is said to be uniform over the interval [a, ] if its density is
constant over the interval [a, b]. Its CDF is thus 0 if z < a, =2 ifa <z < band 1if
x > b.

2. Exponential Distribution

A random variable X is said to have an exponential distribution with rate A,
denoted as X ~ Exp(]) if its PDF is f(z) = Ae** for > 0. Its CDF is thus
F(z) = [Z ft)dt = [Z e Mdt = [- eiAt];o =1l-e

2.1. Exponential vs Geometric

They are similar, both decay exponentially and both are memoryless. But
exponential is continuous whereas geometric is discrete.

3. Gamma Distribution

Gamma(a, A) distribution with the “shape” parameter a > 0 and “rate” parameter

A > 0 has the PDF: f(z) = 1“?:) 2 e for z > 0 where I'(a) = [ 2% 'e “dzisa

normalising constant (so that density integrates to 1).

3.2. Remark: I'(k) = (k — 1)! for integers k > 1.

4. Normal Distribution

A random variable X is said to have a normal (Gaussian) distribution with mean p
and a standard deviation o denoted as X ~ N(u,o?) if its PDF is

Floin, o) = e HE

The density curve is bell-shaped and symmetric about its mean y. A normal

distribution with x = 0 and o = 1 is called the standard normal distribution, which we
denote N (0, 1).



4.3. PDF & CDF of the SND

The PDF & CDF of the SND N(0, 1) are respectively:
PDF: ¢(z) = %e—*/2 with —0co < z < 00
CDF: ®(z) = [ ﬁe’“mdu with —oo < 2z < 00

4.4. Remark: The CDF &(z) has no closed-form solution so we use
the probability table with which we are all too familiar from AP
Stats

5. Beta Distributions

The random variable U is said to have a beta distribution with parameters «, 3 if its

Fat+B)  a-— —1
T(a)r(3) ¢ 1(1 - ) tfor0 < u < 1, denoted as

density is given by f(u) =
U ~ Beta(a, B).

5.5. Remark
Beta(a = 1,8 = 1) is Uniform(0, 1).

Functions/Transformations of a Random
Variable

If X is a cont. r.v. with density fx(z), and Y = g(z), what is the distribution of Y?
Generally we solve by first finding the CDF for Y = g(z) then differentiating to find the
PDF for Y. Usually this involves identifying the CDF for our r.v. (have this memorised)
and then running a chain rule.

6. Remark: Suppose X is a cont. r.v. with the PDF fx(x).
The PDF for Y = aX +bis: fy = % fx (L‘") ifa # 0.

7. Differentiable & Strictly Monotone Transformations

Suppose fx is the PDF of X and g(X) is diff. and strictly monotone. Then Y = g(X)
is a cont. r.v. with PDF fy(y) = fx(g ' (v)) - |diygfl(y)|.

8. Transforming to Uniform

Suppose X is a cont. r.v. with CDF F where:



F is strictly increasing on some interval I.
F = 0 to the left of I, and F = 1 to the right of I.

I may be a bounded interval or an unbounded interval such as the whole real line.
then F~!(u) is then well defined for u € (0, 1) and, interestingly, if we define Y = F(X)
then Y ~ Uniform(0,1) since it has the Uniform CDF. This is a useful trick.

9. The converse: how we generate a r.v. from Uniform
with some given CDF

Let F be the CDF with the conditions from the previous section and let
U ~ Uniform(0, 1). What is the distribution of X = F~!(U)? Notice
P(X <z)=P(FYU) <z)=P(U < F(z)) = F(z) where the last equality holds since
U is Uniform[0, 1]. This means that X has CDF equal to F.

Joint Probability Distributions for Discrete

R.V.

The joint probability mass function (joint PMF) or simply the joint distribution for

discrete r.v. X, X,,..., X} is defined as
(1,295 2p) = P(Xy =21, Xy = 29, X = )
:P({X1:ml}ﬂ{Xg:mz}ﬂ---ﬂ{Xk:mk})

10. Properties of joint PMF:

p(mla L2y .. axk) > 0.

Define the probability for an event A as
P(A) = P((z1,x2,...,2k) € A) = Z(zh%mym)eAp(ml, T2y ..y Th)-

If we set A = Q (the sample space) in (2), then P(2) = 1.



