
Common Continuous Distributions

1.  Uniform Distribution
A random variable X is said to be uniform over the interval [a, b] if its density is

constant over the interval [a, b]. Its CDF is thus 0 if x < a, x−a
b−a

 if a ≤ x ≤ b and 1 if
x > b.

2.  Exponential Distribution
A random variable X is said to have an exponential distribution with rate λ,

denoted as X ∼ Exp(λ) if its PDF is f(x) = λe−λx for x ≥ 0. Its CDF is thus
F(x) = ∫ x

t=∞ f(t)dt = ∫ x
t=0 λe

−λtdt = [ − e−λt]x
t=0

= 1 − e−λx.

2.1.  Exponential vs Geometric
They are similar, both decay exponentially and both are memoryless. But

exponential is continuous whereas geometric is discrete.

3.  Gamma Distribution
Gamma(α,λ) distribution with the “shape” parameter α > 0 and “rate” parameter

λ > 0 has the PDF: f(x) = λα

Γ(α) x
α−1e−λx for x ≥ 0 where Γ(α) = ∫ ∞

z=0 z
α−1e−zdz is a

normalising constant (so that density integrates to 1).

3.2.  Remark: Γ(k) = (k − 1)! for integers k ≥ 1.

4.  Normal Distribution
A random variable X is said to have a normal (Gaussian) distribution with mean μ

and a standard deviation σ denoted as X ∼ N(μ,σ2) if its PDF is
f(x;μ,σ) = 1

σ√2π
e− 1

2 (
x−μ

σ )2

The density curve is bell-shaped and symmetric about its mean μ. A normal
distribution with μ = 0 and σ = 1 is called the standard normal distribution, which we
denote N(0, 1).



4.3.  PDF & CDF of the SND
The PDF & CDF of the SND N(0, 1) are respectively:

PDF: ϕ(z) = 1
√2π

e−z2/2 with −∞ < z < ∞

CDF: Φ(z) = ∫ z

−∞
1

√2π
e−u2/2du with −∞ < z < ∞

4.4.  Remark: The CDF Φ(z) has no closed-form solution so we use
the probability table with which we are all too familiar from AP
Stats

5.  Beta Distributions
The random variable U  is said to have a beta distribution with parameters α,β if its

density is given by f(u) =
Γ(α+β)

Γ(α)Γ(β) u
α−1(1 − u)β−1 for 0 ≤ u ≤ 1, denoted as

U ∼ Beta(α,β).

5.5.  Remark
Beta(α = 1,β = 1) is Uniform(0, 1).

Functions/Transformations of a Random
Variable

If X is a cont. r.v. with density fX(x), and Y = g(x), what is the distribution of Y ?
Generally we solve by first finding the CDF for Y = g(x) then differentiating to find the
PDF for Y . Usually this involves identifying the CDF for our r.v. (have this memorised)
and then running a chain rule.

6.  Remark: Suppose X is a cont. r.v. with the PDF fX(x).
The PDF for Y = aX + b is: fY = 1

|a| fX ( y−b

a
) if a ≠ 0.

7.  Differentiable & Strictly Monotone Transformations
Suppose fX is the PDF of X and g(X) is diff. and strictly monotone. Then Y = g(X)

is a cont. r.v. with PDF fY (y) = fX(g−1(y)) ⋅ | d
dy
g−1(y)|.

8.  Transforming to Uniform
Suppose X is a cont. r.v. with CDF F  where:



9.  The converse: how we generate a r.v. from Uniform
with some given CDF

Let F  be the CDF with the conditions from the previous section and let
U ∼ Uniform(0, 1). What is the distribution of X = F −1(U)? Notice
P(X ≤ x) = P(F −1(U) ≤ x) = P(U ≤ F(x)) = F(x) where the last equality holds since
U  is Uniform[0, 1]. This means that X has CDF equal to F .

Joint Probability Distributions for Discrete
R.V.

The joint probability mass function (joint PMF) or simply the joint distribution for
discrete r.v. X1,X2, … ,Xk is defined as
p(x1,x2, … ,xk) = P(X1 = x1,X2 = x2, … ,Xk = xk)
= P({X1 = x1} ∩ {X2 = x2} ∩ ⋯ ∩ {Xk = xk})

10.  Properties of joint PMF:

1. F  is strictly increasing on some interval I.

2. F = 0 to the left of I, and F = 1 to the right of I.

3. I may be a bounded interval or an unbounded interval such as the whole real line.
then F −1(u) is then well defined for u ∈ (0, 1) and, interestingly, if we define Y = F(X)

then Y ∼ Uniform(0,1) since it has the Uniform CDF. This is a useful trick.

1. p(x1,x2, … ,xk) ≥ 0.

2. Define the probability for an event A as
P(A) = P((x1,x2, … ,xk) ∈ A) = ∑(x1,x2,…,xk)∈A p(x1,x2, … ,xk).

3. If we set A = Ω (the sample space) in (2), then P(Ω) = 1.


